FINAL EXAM (TRANG) - ANSWER KEY

PEYAM RYAN TABRIZIAN

Multiple Choice:

(1) $\mathbf{B}\left(f_{1}, f_{2}, f_{3}\right.$ have to be solutions to a differential equation)
(2) A
(3) A
(4) C
(5) C
(6) A
(7) B
(8) A
(9) C (I think there's a typo in this question, the 1 should be an x)
(10) A
(11) A
(12) B
(13)
(13.1) C (namely, $\operatorname{Proj}(\mathbf{b})$ on $\operatorname{Col}(A)$, but notice that any vector in $\operatorname{Col}(A)$ has its second entry equal to 0)
(13.2) B
(14) A
(15) A
(16)
(16.1) B
(16.2) B
(17) B (again, the 2 should be a $2 x$)
(18) A
(19) A
(20) A
(21) A
(22) \mathbf{B} (I got $\left[\begin{array}{c}0 \\ e^{t}+4 t e^{t} \\ e^{t}+2 t e^{t}\end{array}\right]$)
(23) B
(24) A
(25) A

[^0](26) Both methods should give you the same answer, namely:
$$
y(t)=\frac{7}{3} e^{t}-\frac{10}{3} e^{2 t}-(t-1) e^{2 t}+\frac{t^{2}}{2} e^{2 t}
$$
(27)
\[

\mathbf{x}(t)=\left[$$
\begin{array}{c}
e^{2 t} \\
0
\end{array}
$$\right]
\]

(use generalized eigenvectors, then undetermined coefficients. Then, if you plug in $t=0$ in your general solution, you should get that $A=B=0$)
(28)

$$
[T]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ccc}
0 & -1 & -2 \\
0 & 1 & 3 \\
1 & 1 & 0
\end{array}\right], \quad\left[T\left(1+t+t^{2}\right)\right]_{\mathcal{C}}=\left[\begin{array}{c}
-3 \\
4 \\
0
\end{array}\right]
$$

(29)

$$
\hat{\mathbf{v}}=\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
\frac{1}{2}
\end{array}\right], \quad d=\sqrt{\frac{11}{2}}
$$

Hint: The plane is spanned by $\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$

[^0]: Date: Thursday, December 9th, 2011.

